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Duct acoustic problems differ sharply from the pure exterior problem in that the classical 
radiation conditions do not prevent wall reflections in the former as they do in the latter. 
In this paper we derive alternate boundary conditions which do prevent wall reflections, 
and at the same time can be embedded in a natural way in a Galerkin variational formula- 
tion of the duct problem. 

1. INTRODUCTION 

Wave propagation problems in layers such as arise in underwater acoustics differ 
rather sharply from pure exterior problems in the types of boundary conditions that 
are appropriate. In particular, in the layered problem the normal radiation condition 
can and usually does lead to wall reflections. This creates serious computational 
problems for standard finite element and finite difference approximations in the 
sense that both these methods-either by mapping or by truncation-wind up solving 
a problem in a bounded region. The “conditions at Unity” implied by these techni- 
ques invariably lead to reflections. This problem can be avoided by reformulating the 
boundary value problem as an integral equation [l, 21; however, the latter has other 
computational problems such as the need for the exact free space Green’s function 
which often is difficult to obtain in variable coefficient problems. 

In this paper we formulate a “generalized radiation condition” that on the one 
hand prevents wall reflections, and at the same time, can be incorporated in a natural 
way into a Galerkin type variational formulation of the problem. The latter is used in 
the present work as a starting point for a finite element scheme, however the variational 
principle could be used equally well to derive finite difference schemes. 

The basic ideas that we use in the variational formulation of layered problems are 
actually quite general. Marin [3] has shown that they can be effectively applied to 
exterior problems, and are a natural way to blend standard finite element approxima- 
tions with integral equation techniques. In addition, Marin has developed a theory 
for stability and accuracy of the associated approximations. 

In concurrent and independent work Engquist and Majda [4] derived generalized 
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generalized outflow boundary conditions using transform techniques. The context for 
their work was hyperbolic systems in exterior regions, but their results carry over 
without difficulty to the Helmholtz problem in an exterior region. Our work differs 
from this approach in that “duct” or “semibounded” regions are treated, and separa- 
tion of variables rather than transform techniques are used to develop the outflow 
conditions. 

It is perhaps of importance to emphasize that the boundary conditions developed 
here (as well as the analog in [4]) are nonlocal. This is in striking contrast to the 
classical radiation condition which implies that the normal derivative of the solution 
4 is proportional to 4 at each point on the boundary. In our context the normal 
derivative will depend on values of C#J on the entire exterior boundary. 

2. MATHEMATICAL MODEL 

To fix ideas we consider an axially symmetric acoustic potential $ which satisfies the 
Helmholtz equation 

of) + CL@ = 0 (1) 

in Sz subject to the boundary conditions 

#=g on r = rO , 4 = 0 on z = 0, 3 an = 0 on z = H(r) (2) 

(see Fig. I), where z denotes the vertical axis and r denotes the radial coordinate. The 

FIG. I. The region 52. 

problem we are addressing is the following. Suppose IR were truncated at some radius 
r = raa to give the bounded region 

i2 = {(r, z) E 1;2 I r, < r < r,}. (3) 

What types of boundary conditions can be given at r = r, that will prohibit reflections 
off this boundary ? 
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To get some insight into this problem, and at the same time see that the normal 
radiation condition 

a4 -= 
ar iq3 on r = r, 

is not always appropriate, let us suppose for the moment that w  and Hare constant and 

Q = {(r, z)l r. < r, 0 < z < H}. 

Following Brekhovskikh [5] a solution exists and has the form 

where C#J+ admit the power series 

with 
+;t = 1 ski sin W,Z&(U,r) 

uk 
zzw2- 

wk2, Wk = 
(2k - 1) 7r 

2H ’ 

and H+ , H- are the Hankel functions of the first and second kind of zero order. 
We recall that these functions have the asymptotic expansions 

H*(5) = [W-11/z exp[+i(f - 7d4)1{5?/” + O(lf3/“)} (4) 

as 15‘ I + co. Thus if 

w xwk, all k, (5) 

H+(a,r) is exponentially decreasing to zero as r f cc while H-(a,r) is exponentially 
increasing to infinity. The physically correct solution is therefore 

$=4+3 (6) 

where the coefficients {ak’} are determined from the boundary condition C# = g at 
r = r0 . Observe that in this case there really is no difficulty with the boundary, and 
any condition that precludes unbounded solutions is satisfactory. 

In the physically more interesting case where (5) fails for some values of k, the 
situation is completely different. Suppose for the moment that 

Wl < w  < w2. (7) 

If we view C#J as arising from the wave equation, i.e., 

l)(t) = e-wp, 
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where 

then the term 

H+(a,r) sin olz 

is associated with a wave moving to the right while 

H-(0,r) sin wlz 

is associated with a wave moving in the opposite direction. Both of these terms are 
damped like 

119, 

and the other terms are either decreasing exponentially to zero or are unbounded as 
r t co. Thus the solution that represents only outgoing waves at r = rm is again (6). 

The important point to make is that this solution is not determined by the radiation 
condition (3), and in fact, the latter will yield nonzero values of a,-, and hence a 
reflected wave 

a,-IT-(qr) sin qz 

will be added to ++ . 
Observe that the condition 

- = j(w2 - ,12)w 4 ar 
(plus boundedness) will generate the correct solution when (7) holds. However, if 

Wl < *** < wj < w < wj+1 

for some j >, 2, then (8) is no better than (3) in the sense that it will add spurious 
reflections 

al-H-(qr) sin wlz + -*- + aj-II- sin qz 

to the physically correct solution 

al+H+(olr) sin qz + ... + aj+H+(crjr) sin qz. 

What is needed then is a generalized radiation condition 

- = T(4) at r = r, 
at- (9) 
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that will prevent reflections in those cases where we cannot solve the partial differential 
equation exactly (i.e., if w  were not constant or if 0 were not a rectangle). 

One way to approach this problem is let w  be variable inside b but assume that it is 
constant on Q - 0, and assume that 52 - fi is rectangular as in Figure II. In this 
case the desired solution has the representation 

d@, z> = zl ukH+(ukr) sin wkz (10) 

for r > rm where the coefficients ak are related to the (unknown) values of d(r, , z) by 

Thus 

_ = T($) on r = r, , 
ar (12) 

where 

T(d) = 2 oka, ff+V(ukr) sin %z. (13) 
k=l 

The boundary value problem is then to solve (1) in Q subject to 

+=gonr=r,; 

+/an = 0 on the top wall and #J = 0 on the bottom wall with (12) being the outflow 
condition at r = r, . 

FIG. II. The truncated region Q. 

Observe that the latter is a “nonlocal” boundary condition in the sense that it 
couples 

-Z& (r,, 4 

at any point z with the values of c#J(~, , .) at all other points on r = rm . However, as 
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we shall show in the next section this does not seriously affect the computational 
properties of a Gale&in-finite element formulation of this problem. 

For high frequency problems where 

w> 1, (14) 

our boundary condition (12) may be very close to the classical radiation condition 
(3). Indeed, suppose in addition to (14) that w  is not near a critical value wk so 

for all real (TV . Then 

Thus 

where 

This means that 

(Tk = w(l - (wk/w)2)1/2 s Cl, 

H+v(~krm> 

H+(wm) 
= i + O(o,r,)-1. 

c akak(+) H+e(ukr) sin wkz e iw 1 ak sin W&z, 
k k 

(15) 

on r = rm 

whenever uk = (w2 - wk2)1’2 G w  for those k for which uL 3 0. That is, (12) reduces 
to the standard radiation condition (2) as w  + 00. 

3. A VARIATIONAL FORMULATION 

To reformulate our boundary value problem ((l)-(2), (12)) in a variational form we 
use the classical Gale&in ideas. That is, we multiply (1) by a test function # and inte- 
grate over 0, to get 

s 6 
[h#J + a241 * = 0. 

Using Green’s theorem on the first term gives 
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Denoting the line r = rm by r, and requiring that # satisfy 

*=o on r = r. , t) = 0 on z = 0 

we obtain 

44, $4 = J. 1-04 * v* + +$I + f,, T(4) # R 

A precise statement of the variational principle is given below. 

0. 

PROBLEMIT. Find a function rj with square integrable gradient satisfying 

4b=g on r = r. , 

4=Oonz=O, 

259 

(16) 

(17) 

08) 

(1% 

and for which (17) is true for all $ (with square integrable gradient) satisfying (16). 
Observe that 

- = 0 on 2 = H(z) an 
and 

- = T(4) on r, an 

are natural boundary conditions in this formulation. 
To approximate the solution 4 of this problem we introduce a finite dimensional 

space Sh and let Sgh be the subspace of functions # E Sh satisfying (16). In addition we 
select a g, E S* which approximates g on r = r. . Then our approximate problem is 
the following. 

PROBLEM AVP. Find a & E Sh such that 

$bh = gh on r = r. , (20) 

$bh = 0 on z = 0, (21) 

and such that 

ddh , #“> = 0 (22) 

for all *” o Sgh. 
As usual this formulation is equivalent to a system of linear equations once a basis 

Ah,..., &la has been selected for Sh. Indeed, since & - g, E Sgh we have 
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for some weights q1 ,..., qN . The latter are determined by (22), i.e., 

g1 4k4y di”) = --a(g, 1 A”> 

forj = l,..., N, or what is the same, 

Kq = g, 

where the (j, k) entry of K is 

4hh, Ah) = J‘, [-V$kh * VAh + w~&~QI + S, T($,h) $j”- (23) 

The function T($kh) comes from the generalized radiation condition (12); thus 

m 
T(dkh> = c wd#kh) H+4vm) sin w, 

Z=l 
(24) 

where 

2 
s 

ffm 
44kh) = fLH+(wm) o 

dz (cqSkh(r, , z) sin wzz. 

Observe that the exact evaluation of the term 

in (23) requires the summation of the series 

c %k%$% 9 
where 

and 

2 
a1 

k=-..- 
s 

Kc 

Hm o 
dz $kh(rm , Z) sin Lutz 

Since the functions $kh in the basis for So h have square integrable gradients and 
vanish at z = 0, it follows that 

Ollk = O(l-2). 

Since /31 = O(l), the terms in the series are of order O(P). This is a sufficiently fast 
convergence so the series can be summed without appreciable computational effort. 
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However, for the special configuration used here it is necessary to retain only those 
terms in the series expansion of T which correspond to values of the index I at which 

Wl < w  by w1 ,..., WN < CiJ < UN+& 

Indeed, let us denote this truncated version of T by TA and, for purposes of illustration, 
solve the problem for the case of the flat top, i.e., z = H(r) = H, with a$/% = 
TA(4) on r, . In doing so we find that the error is given by 

f b,A,(r) sin(wkz), 
k=N+l 

where the bb’s are the Fourier coefficients of the data given on r = r, and A,(r) is 
given by 

Using the asymptotic expansions (4) and similar expansions for the derivatives of the 
Hankel functions, we may conclude that 

j A,(r)1 < ce-“‘J(“‘m+‘J 

for rm sufficiently large and for r. < r < r, (we have used the fact that (Tk = i j ok 1 for 

k > N + 1). Thus, for a fixed number of terms in T A , the error decays exponentially 
as a function of rm . 

4. NUMERICAL EXPERIMENTS 

The numerical results reported in this section used 

H(r) = H, 11 + -/j&l- sin j3rl (26) 

for the top boundary and 

g(z) = sin qz. (27) 

The space Sh consists of piecewise linear functions on a distorted triangular grid whose 
nodal points are at 

rjz = r. + jh(r, - ro), 

zjz = lhfLirjz), 

forj, 1 = l,..., l/h. 

581/28/z-9 
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The first set of experiments deals with a flat top where cx = 0. 

r, = 1, rm = 10, H, = 1. 

(The exact solution 4 in this case is 

+(r, 2) = H+(u,r) sin ~~2. 

(28) 

(29) 

FE. 1. (A) o = 3, oi = 0, real part of +h. (B) w = 3, 01 = 0, imaginary part of &, 

Figure 1 contains a plot of the approximate solution c)~ as a function of r various 
values of z and 

wh= I,$,$, (30) 

with w  = 3. The second order convergence is qualitatively clear from this figure, and 
was confirmed quantitatively by the authors by direct computation of the error 
q - yn * 
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]FlG. 2. (A) w = 6, .x = 0, real part of +&a (B) w = 6, OL = 0,limaginary part of &. 

Observe that for the parameters (28) 

( 
2k - 1 

OJk = 2 r’; 1 

hence 

Ul < u < w2 

for w = 3. Accordingly only one term in the power series expansion for T(e) was 
used in the computation of vh . 

Figure 2 contains the analogous results for w = 6 where 

w2 < w < WQ, 
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FIG. 3. (A) The difference (31), w = 3, LX = 0, z = 3, solid line is real part. (B) The difference 
(31), 0 = 3, Ly = 0,z = 3, solid line is real part. (C) The difference (31), w = 3, OL = 0, z = I, solid 
line is real part. 



FIG. 4. (A) The difference (31), w = 6, 01 = 0, z = Q, solid line is real part. (B) The difference 
(31), w = 6, LY = 0, z = $, solid line is real part. (C) The difference (31), w = 6, 01 = 0, z = 1 
solid line is real part. 

Y= 2/3 

FIG. 5. (A) u = 3, curved top, real part of &. (B) w = 3, curved top, imaginary part of -$a. 
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Two terms were used in T(e) for this w  in the computatidn of q+, . 
Figures 3 and 4 contain plots of the difference 

@ - AL (31) 

between P)~ and the solution & with the classical radiation boundary condition (3) for 
w  = 3 and w  = 6. The difference represents wall reflections in Gh and is less severe for 
w  = 6 than for w  = 3. The reason for this was pointed out in Section 2 where it.was 
noted that the generalized radiation condition approached the classical radiation 
condition as w  + co. 

FIG. 6. (A) w = 6, curved top, real part of &. (B) w = 6, curved top, imaginary part of &, 
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p .06 

.06 

.04 

.OE 

FIG. 7. (A) The difTerenc;e (31), w = 3, curved top, y  = 4, solid line is real part. (B) The difference 
(31), w = 3, curved top, y  = $, solid line is real part. (C) The difference (31), o = 3, curved top, 
y  = 1, solid line is real part. 
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The next set of experiments deals with a curved top z = H(z) with H given by (26) 
with 

a = .25, /3 = 1.26. (32) 

Figure 5 contains plots of q)h as a function of r for various values of 

for o = 3 and wh given by (30). Although the exact solution is not known in this 
case, the figures indicate second order convergence. The analogous results for w  = 6 
are plotted in Fig. 6, and Fig. 7 and 8 contain plots of the difference & - qh . 

B 
.02 

I i ~~++fvAv~~no~ 
, -x, -., “‘.. ,̂ -., .._. .._ .-._ ‘..,1 I _.,, . _,a .-. __.‘I ._.. . ..I __v 

-.02 

FIG. 8. (A) The difference (31), w = 6, curved top, y  = 4, solid line is real part. (B) The difference 
(31), w = 6, curved top, y  - $, solid line is real part. (C) The difference (31), w = 6, curved top, 
y  = 1, solid line is real part. 
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FIG. 9. (A) The difference (33), w = 6, curved top, y  = 4, solid line is real/part. (B) The difference 
(33), w = 6, curved top, y  = Q, solid line is real part. (C) The difference (33X w = 6, curved top, 
y  = 1, solid line is real part. 

In the final figure we illustrate the importance of having the correct number of 
terms in T(e). In particular, Fig. 9 contains a plot of the difference 

4;’ - $2’ (33) 

for w  = 6 and a curved top, where qh (I) is the approximate solution with I terms in T(.). 
For w  = 6 one term is not sufficient since w2 < w  < wg requires that two terms 
should be used in T(v). We also computed 

(g’ - (#p 
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and there was no detectable difference, which reflects the fact that these extra terms 
are exponentially small. 
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